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Motivation

• Representation learning lives at the heart of deep 
learning for NLP: such as in supervised classification and 
self-supervised (or unsupervised) embedding learning. 


• Most existing methods assume a static world and aim to 
learn representations for the existing world.


• However, the world keeps evolving and challenging 
existing learned representation.
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Motivation

The world evolves till now ...
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Observation

• The world keeps evolving. 


• Existing methods typically favor the majority examples 
from the existing world.


• But the changes of the world typically end with long-tailed 
minority examples, which greatly challenge existing 
models in future.


• Can we keep learning from the changes of the world?
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Lifelong  
Representation Learning

• Lifelong learning (Thrun 1995, Chen and Liu 2016/2018) is 
a problem that aims to learn from a sequence of tasks.


• online multi-task learning


• Lifelong representation learning aims to improve 
representations from a sequence of tasks.
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Roadmap
• Motivation


• Lifelong Supervised Learning


• Open-world Classification (WWW 2019) 

• Lifelong Self-supervised Learning


• Domain Word Embedding (IJCAI 2018, ACL 2018)


• Contextualized Domain Representation Learning
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Roadmap

• Lifelong Supervised Learning


• Open-world Learning and Application to Product 
Classification (WWW 2019)
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Motivation
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• Traditional classification tasks assume a closed-world 
setting:


• human specified a set of seen classes that is static and 
never changed.

Motivation
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• When some new classes come in, ...
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?

• When some new (unseen) classes come in:


• It cannot handle it.


• e.g., the default behavior of a softmax-based classifier 
forces an example from an unseen class to be one of 
seen classes.
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X

• First, the classifier is expected to be functionally correct on 
the seen set (Shu et al., 2017):


• reject the examples from unseen classes.


•
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X

• First, the classifier is expected to be functionally correct on 
the seen set (Shu et al., 2017):


• reject the examples from unseen classes.


• but not on examples from a seen classes.
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• Second, just making an old classifier functionally correct is not 
very useful for future.
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• We may want the set of seen classes keeps growing / shrinking 
without retraining from scratch.


• but we still want examples from all unseen classes to be 
rejected to make the classifier functionally correct.
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• Open-world learning (OWL) aims detect / reject examples of 
unseen classes and incrementally learn/accept (or remove) new 
classes.
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Closed-world 

vs Open-world Classification

• Traditional learning makes the closed world assumption:


• Classes in testing have all been seen in training, no 
new class in testing.


• However, this classic learning paradigm is difficult to 
function in the real world open environment: new classes 
may come any time.

• (Fei et al, 2016; Shu et al., 2017; Chen and Liu, 2016/2018 LML book)
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Main Contribution

• Open-world learning (OWL) problem (classification) over a 
dynamic set of classes.


• A meta-learning framework that aims to learn cross-class 
(cross-task) representations to solve OWL.
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Classification as Humans 
• When working on a dynamic set of classes (e.g., # 

classes > 10), we humans perform comparison-based 
classification.


• without learning new classes ahead, we can do 
classification on examples from new unseen classes.


• we essentially have a kNN classifier in brain: train a 
general comparator for any class (Meta-Learning), 
apply it to concrete data of new classes on the fly.


• Meta-learning could be one way to solve OWL.
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Learning to Accept new 
Classes (L2AC Framework)

• It maintains a dynamic set S of seen classes that allow 
new classes to be added / deleted with no model re-
training.


• Each class is represented by a small set of training 
examples.


• In testing, the meta-classifier uses only the examples of 
the maintained seen classes so far on-the-fly for 
classification and rejection.
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Framework
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Meta Classifier
• We train a meta classifier:


• Assume we have an embedding for each document. 


• We first compute relevance score between a pair of 
embeddings from two documents:


• We adopt two similarity functions to aggregate the pair 
of embeddings.
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Meta Classifier

• Then we aggregate all those relevant scores for k 
examples for each class:


• This is essentially a parametric kNN with parametric 
(trainable) voting mechanism.
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Open-world Classification

• Rejection based on the set of seen classes:


• We balance the weights of positive / negative examples 
during meta training. 
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Meta Training

• We perform meta training on a holdout set of classes.


• Positive examples: sample one example xq and its 
kNN examples from the same class c.


• We choose a set n (|M| - 1) NN negative classes for 
each xq (via cosine similarity to class center).


• Negative examples: xq with kNN examples from a 
negative class c'.
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Experiment

• Dataset: Amazon Dataset (Julian et al., 2016). 


• We formulate a task of product classification on 
description.


•
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Meta Training / Testing over 
Different Set of Classes
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Classes for  
Document Encoder: 

1000

Classes for  
Meta-Training: 

900 

Classes for  
Meta 

Validation:  
100

Classes Testing: 100 

Examples for Testing: 
50%

Examples for Baseline 
Training/L2AC Reading: 

50%
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Experiment

• Dataset: Amazon Dataset (Julian et al., 2016). 


• We formulate a task of product classification on 
description.
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Evaluation Metrics

• Evaluation Metrics: 


• Macro F1.


• Weighted F1.
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Compared Methods
• DOC (Shu et al., 2017) and variants: retrain DOC for 

different sets of seen classes.


• DOC-CNN: DOC (t=0.5) in original DOC paper.


• DOC-LSTM: DOC with LSTM


• DOC-Enc: use our pre-trained encoder


• DOC-*-Gaus: above 3 baselines with gaussian fitting:


• DOC-CNN-Gaus is DOC in original DOC paper.
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Compared Methods

• L2AC and variants:


• L2AC-n9-NoVote: k=1, n=9.


• L2AC-n9-Vote3: use kNN manual voting on k=3.


• L2AC-k5-n9-AbsSub/Sum: ablation study on relevance 
function.


• L2AC-k5-n9/14/19: k=5, n=9, 14, 19.
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Hyper-parameters on Meta 
Validation Set
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Results on 10 runs
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Conclusion

• We propose a challenging problem: open-world learning 
(classification), which performs classification / rejection on 
a dynamic set of classes.


• We propose a meta-learning based method to learn 
cross-class representations and metrics for detecting 
intra / inter class examples. 


• The method requires no training during testing on a 
dynamic pool of classes.
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Roadmap
• Motivation


• Lifelong Supervised Learning


• Open-world Classification (WWW 2019)


• Lifelong Self-supervised Learning


• Domain Word Embedding (IJCAI 2018, ACL 2018) 

• Contextualized Domain Representation Learning
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Motivation
• General-purpose embeddings (fastText, GloVe) are 

trained on large-scale corpora, which is assumed to 
cover all domains.


• They lack domain-specific knowledge, especially 
new domains with small corpora.


• They tend to mix the knowledge of one word from 
different domains: a small domain will be biased.


• Training domain-specific embeddings typically lacks 
large in-domain corpora. 
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Problem

• Lifelong Learning for Domain Word Embedding:


• We focus on lifelong data augmentation for the (n+1)-th 
domain by leveraging the past n domains corpora.
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Main Contribution

• Lifelong Learning problem for domain word 
embeddings.


• A meta-learner to learn cross-domain context 
similarity for a word.
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Ideas

!55

• Domains are not totally isolated.


• A word in one domain could be 
similar (or dissimilar) to the word in 
another domain.
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• A word in one domain could be 
similar (or dissimilar) to the word in 
another domain.



Ideas
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• In the skip-gram model: 


• a positive training example is a word (input) 
and its contexts (output).


• For a laptop domain,


• we may like examples from "It's excellent for 
java programming" (desktop), 


• but NOT "The java coffee from Starbucks is 
good" (food).



Challenge

• How to identify relevant knowledge or contexts 
(from a past domain corpus) for the current 
domain?


• How to automatically do that (without human 
annotation)?



L-DEM
• We propose a meta-learning based framework: 


• L-DEM (Lifelong Domain Embedding via Meta-
learning):


• A meta-learner:


• predict and carry relevant past knowledge (a 
word and its contexts) to augment the new 
domain corpus.



L-DEM

word contexts 
vector
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Meta-Learner
• A word-level cross-domain meta-learner to 

identify relevant past knowledge.


• Input: a pair of word contexts vectors (for the 
same word);


• Output: whether they are from similar domains or 
not.


• Relevant Past Knowledge: a word and its contexts 
in a past domain corpus.
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Word Contexts Vector
• a TF vector built from all contexts of a word in a 

(sub-sampled) domain corpus.


• contexts: words within a 10 words sliding 
window.


• The word indexed by j in the k-th sub-sampled 
corpus of the i-th domain.
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Meta-Learner
• Architecture: a siamese network.


• This network is trained from a holdout m domains.


• positive examples: two sub-exampled corpora 
from the same domain;


• negative examples: two sub-exampled corpora 
from different domains.



L-DEM



Augmented Embedding 
Training

• A modified skip-gram that takes two sources: 


• the current domain corpus and relevant past 
knowledge A (word contexts). 

•



Experiments

• Datasets: 


• Amazon Review datasets (He and McAuley, 
2016), which is a collection of multiple-domain 
corpora.


• We take the 2nd level category as a domain.
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Different Sets of Domains
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Domains for  
Meta-Learner 

Train/Valid/Test: 39/5/12

Past Domains: 
50/100/200 Domains for End tasks: 

3



Domains for End Tasks

• Computer Components (CC): 13 classes.


• Kitchen Storage and Organization (KSO): 17 classes.


• Cats Supply (CS): 11 classes.


• Each domain is sampled with 2 sizes of in-domain 
corpus: 10 MB and 30 MB.



Training of Meta-Learner

• We randomly select 2000, 500 and 1000 words 
from each training, validation, and testing domain 
of meta-learner. 



Evaluation of Meta-Learner
• F1-score of the proposed base meta-learner model is 

0.81.


• We further fine-tune meta-learner for a new domain:


•



End Task Model
• We use a simple embedding layer + Bi-LSTM 

model + dense + softmax to evaluate the 
performance of different embeddings.


• The input size of Bi-LSTM is the same as the 
embedding and the output size is 128.


• We apply dropout rate of 0.5 on all layers except 
the last layer and use Adam as the optimizer.



Baselines of Pre-trained 
Embedding

• No Embedding (NE): random initialization of embedding 
layer.


• fastText (Wiki.en), GoogleNews, GloVe.Twitter.27B, GloVe.
6B, GloVe.840B


• New Domain 10M (ND 10M), New Domain 30M (ND 30M)


• 200 Domains + New Domain 30M (200D + ND 30M)


• L-DENP 200D: replace the meta-learner with a cosine 
function.



Results



Conclusions
• We formulate a problem of learning domain word 

embedding from small corpus. 


• Given many previous domains and a small new 
domain corpus, the proposed method can leverage 
relevant contexts from in the past domain to 
augment the current domain, via a meta-learner. 


• Experimental results show that our method is 
promising. 



Application to Aspect 
Extraction

• Double Embeddings and CNN-based Sequence 
Labeling for Aspect Extraction (ACL 2018)


• Both general-purpose word embeddings and 
domain-specific word embeddings have their own 
merits for different types of words.


•



Extension
• Double Embeddings and CNN-based Sequence 

Labeling for Aspect Extraction (ACL 2018)


•



Roadmap
• Motivation


• Lifelong Supervised Learning


• Open-world Classification (WWW 2019)


• Lifelong Self-supervised Learning


• Domain Word Embedding (IJCAI 2018, ACL 2018)


• Contextualized Domain Representation Learning
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Future Work

• Contextualized Domain Representation Learning


• Pre-trained language models, such as ELMo and BERT, 
significantly boost the performance of many NLP tasks.


• However, they are not perfect on


• new domains.


• end tasks with less training data.
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Future Work

• Contextualized Domain Representation Learning


• keep learning better representations from general-
purpose language models to domain-specific language 
models for better fine-tuning of end tasks.


• keep more relevant tasks before fine-tuning on end 
tasks with less training data.
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QAs

• Thanks for coming.
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Roadmap
• Motivation


• Lifelong Supervised Learning


• Open-world Classification (WWW 2019)


• Graph Representation Learning 

• Lifelong Self-supervised Learning


• Domain Word Embedding (IJCAI 2018, ACL 2018)


• Contextualized Domain Representation Learning
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Future Work

• Lifelong Graph Representation Learning


• learning the changes of a knowledge graph (KB) and 
the updated representation for reasoning, policy 
learning and future use.
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Retrieve Relevant Past Knowledge



Augmented Embedding Training
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Fine-tune Meta-Learner

• Sample 3000 words from each domain of end tasks 
and select 3500 paired examples for training, 500 
examples for validation and 2000 examples for 
testing.
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Evaluation of End Task

• We randomly draw 1500 reviews from each class to 
make up the experiment data, from which we keep 
10000 reviews for testing and split the rest 7:1 for 
training and validation, respectively.


• We train and evaluate each task on each system 10 
times (with different initializations) and average the 
results.


