
Lifelong Representation Learning
for NLP Applications

Hu Xu

�1

Committee Members:

Prof. Philip S. Yu, Chair and Advisor

Prof. Bing Liu, Co-advisor

Prof. Piotr Gmytrasiewicz

Prof. Natalie Parde

Prof. Sihong Xie (Lehigh University)

Motivation

• Representation learning lives at the heart of deep
learning for NLP: such as in supervised classification and
self-supervised (or unsupervised) embedding learning.

• Most existing methods assume a static world and aim to
learn representations for the existing world.

• However, the world keeps evolving and challenging
existing learned representation.

!2

Motivation

!3

Motivation

The world evolves till now ...

!4

Motivation

current timestamp

!5

Motivation

current timestamp

!6

Motivation

current timestamp

!7

Motivation

current timestamp

!8

Motivation

current timestamp

!9

Motivation

current timestamp

?

!10

Motivation

current timestamp

Open-world Risk

!11

Motivation

current timestamp

!12

Motivation

current timestamp

!13

Motivation

current timestamp

!14

Observation

• The world keeps evolving.

• Existing methods typically favor the majority examples
from the existing world.

• But the changes of the world typically end with long-tailed
minority examples, which greatly challenge existing
models in future.

• Can we keep learning from the changes of the world?

!15

Lifelong
Representation Learning

• Lifelong learning (Thrun 1995, Chen and Liu 2016/2018) is
a problem that aims to learn from a sequence of tasks.

• online multi-task learning

• Lifelong representation learning aims to improve
representations from a sequence of tasks.

!16

Roadmap
• Motivation

• Lifelong Supervised Learning

• Open-world Classification (WWW 2019)

• Lifelong Self-supervised Learning

• Domain Word Embedding (IJCAI 2018, ACL 2018)

• Contextualized Domain Representation Learning

!17

Roadmap

• Lifelong Supervised Learning

• Open-world Learning and Application to Product
Classification (WWW 2019)

!18

Motivation

�19

• Traditional classification tasks assume a closed-world
setting:

• human specified a set of seen classes that is static and
never changed.

Motivation

�20

• When some new classes come in, ...

�21

?

• When some new (unseen) classes come in:

• It cannot handle it.

• e.g., the default behavior of a softmax-based classifier
forces an example from an unseen class to be one of
seen classes.

�22

X

• First, the classifier is expected to be functionally correct on
the seen set (Shu et al., 2017):

• reject the examples from unseen classes.

•
�23

X

• First, the classifier is expected to be functionally correct on
the seen set (Shu et al., 2017):

• reject the examples from unseen classes.

• but not on examples from a seen classes.

�24

• Second, just making an old classifier functionally correct is not
very useful for future.

!25

• We may want the set of seen classes keeps growing / shrinking
without retraining from scratch.

• but we still want examples from all unseen classes to be
rejected to make the classifier functionally correct.

!26

• Open-world learning (OWL) aims detect / reject examples of
unseen classes and incrementally learn/accept (or remove) new
classes.

!27

Closed-world

vs Open-world Classification

• Traditional learning makes the closed world assumption:

• Classes in testing have all been seen in training, no
new class in testing.

• However, this classic learning paradigm is difficult to
function in the real world open environment: new classes
may come any time.

• (Fei et al, 2016; Shu et al., 2017; Chen and Liu, 2016/2018 LML book)

!28

Problem Statement

!29

Problem Statement

!30

Problem Statement

!31

Problem Statement

!32

Main Contribution

• Open-world learning (OWL) problem (classification) over a
dynamic set of classes.

• A meta-learning framework that aims to learn cross-class
(cross-task) representations to solve OWL.

!33

Classification as Humans
• When working on a dynamic set of classes (e.g., #

classes > 10), we humans perform comparison-based
classification.

• without learning new classes ahead, we can do
classification on examples from new unseen classes.

• we essentially have a kNN classifier in brain: train a
general comparator for any class (Meta-Learning),
apply it to concrete data of new classes on the fly.

• Meta-learning could be one way to solve OWL.

!34

Learning to Accept new
Classes (L2AC Framework)

• It maintains a dynamic set S of seen classes that allow
new classes to be added / deleted with no model re-
training.

• Each class is represented by a small set of training
examples.

• In testing, the meta-classifier uses only the examples of
the maintained seen classes so far on-the-fly for
classification and rejection.

!35

Framework

!36

Meta Classifier
• We train a meta classifier:

• Assume we have an embedding for each document.

• We first compute relevance score between a pair of
embeddings from two documents:

• We adopt two similarity functions to aggregate the pair
of embeddings.

!37

Meta Classifier

• Then we aggregate all those relevant scores for k
examples for each class:

• This is essentially a parametric kNN with parametric
(trainable) voting mechanism.

!38

Open-world Classification

• Rejection based on the set of seen classes:

• We balance the weights of positive / negative examples
during meta training.

!39

Meta Training

• We perform meta training on a holdout set of classes.

• Positive examples: sample one example xq and its
kNN examples from the same class c.

• We choose a set n (|M| - 1) NN negative classes for
each xq (via cosine similarity to class center).

• Negative examples: xq with kNN examples from a
negative class c'.

!40

Experiment

• Dataset: Amazon Dataset (Julian et al., 2016).

• We formulate a task of product classification on
description.

•

!41

Meta Training / Testing over
Different Set of Classes

!42

Classes for
Document Encoder:

1000

Classes for
Meta-Training:

900

Classes for
Meta

Validation:
100

Classes Testing: 100

Examples for Testing:
50%

Examples for Baseline
Training/L2AC Reading:

50%

 75 5025

Experiment

• Dataset: Amazon Dataset (Julian et al., 2016).

• We formulate a task of product classification on
description.

!43

Evaluation Metrics

• Evaluation Metrics:

• Macro F1.

• Weighted F1.

!44

Compared Methods
• DOC (Shu et al., 2017) and variants: retrain DOC for

different sets of seen classes.

• DOC-CNN: DOC (t=0.5) in original DOC paper.

• DOC-LSTM: DOC with LSTM

• DOC-Enc: use our pre-trained encoder

• DOC-*-Gaus: above 3 baselines with gaussian fitting:

• DOC-CNN-Gaus is DOC in original DOC paper.

!45

Compared Methods

• L2AC and variants:

• L2AC-n9-NoVote: k=1, n=9.

• L2AC-n9-Vote3: use kNN manual voting on k=3.

• L2AC-k5-n9-AbsSub/Sum: ablation study on relevance
function.

• L2AC-k5-n9/14/19: k=5, n=9, 14, 19.

!46

Hyper-parameters on Meta
Validation Set

!47

Results on 10 runs

!48

Conclusion

• We propose a challenging problem: open-world learning
(classification), which performs classification / rejection on
a dynamic set of classes.

• We propose a meta-learning based method to learn
cross-class representations and metrics for detecting
intra / inter class examples.

• The method requires no training during testing on a
dynamic pool of classes.

!49

Roadmap
• Motivation

• Lifelong Supervised Learning

• Open-world Classification (WWW 2019)

• Lifelong Self-supervised Learning

• Domain Word Embedding (IJCAI 2018, ACL 2018)

• Contextualized Domain Representation Learning

!50

Motivation

!51

Motivation
• General-purpose embeddings (fastText, GloVe) are

trained on large-scale corpora, which is assumed to
cover all domains.

• They lack domain-specific knowledge, especially
new domains with small corpora.

• They tend to mix the knowledge of one word from
different domains: a small domain will be biased.

• Training domain-specific embeddings typically lacks
large in-domain corpora.

!52

Problem

• Lifelong Learning for Domain Word Embedding:

• We focus on lifelong data augmentation for the (n+1)-th
domain by leveraging the past n domains corpora.

!53

Main Contribution

• Lifelong Learning problem for domain word
embeddings.

• A meta-learner to learn cross-domain context
similarity for a word.

!54

Ideas

!55

• Domains are not totally isolated.

• A word in one domain could be
similar (or dissimilar) to the word in
another domain.

Ideas

!56

• Domains are not totally isolated.

• A word in one domain could be
similar (or dissimilar) to the word in
another domain.

Ideas

!57

• In the skip-gram model:

• a positive training example is a word (input)
and its contexts (output).

• For a laptop domain,

• we may like examples from "It's excellent for
java programming" (desktop),

• but NOT "The java coffee from Starbucks is
good" (food).

Challenge

• How to identify relevant knowledge or contexts
(from a past domain corpus) for the current
domain?

• How to automatically do that (without human
annotation)?

L-DEM
• We propose a meta-learning based framework:

• L-DEM (Lifelong Domain Embedding via Meta-
learning):

• A meta-learner:

• predict and carry relevant past knowledge (a
word and its contexts) to augment the new
domain corpus.

L-DEM

word contexts
vector

L-DEM

word contexts
vector

L-DEM

word contexts
vector

Meta-Learner
• A word-level cross-domain meta-learner to

identify relevant past knowledge.

• Input: a pair of word contexts vectors (for the
same word);

• Output: whether they are from similar domains or
not.

• Relevant Past Knowledge: a word and its contexts
in a past domain corpus.

 63

Word Contexts Vector
• a TF vector built from all contexts of a word in a

(sub-sampled) domain corpus.

• contexts: words within a 10 words sliding
window.

• The word indexed by j in the k-th sub-sampled
corpus of the i-th domain.

 64

Meta-Learner
• Architecture: a siamese network.

• This network is trained from a holdout m domains.

• positive examples: two sub-exampled corpora
from the same domain;

• negative examples: two sub-exampled corpora
from different domains.

L-DEM

Augmented Embedding
Training

• A modified skip-gram that takes two sources:

• the current domain corpus and relevant past
knowledge A (word contexts).

•

Experiments

• Datasets:

• Amazon Review datasets (He and McAuley,
2016), which is a collection of multiple-domain
corpora.

• We take the 2nd level category as a domain.

 68

Different Sets of Domains

!69

Domains for
Meta-Learner

Train/Valid/Test: 39/5/12

Past Domains:
50/100/200 Domains for End tasks:

3

Domains for End Tasks

• Computer Components (CC): 13 classes.

• Kitchen Storage and Organization (KSO): 17 classes.

• Cats Supply (CS): 11 classes.

• Each domain is sampled with 2 sizes of in-domain
corpus: 10 MB and 30 MB.

Training of Meta-Learner

• We randomly select 2000, 500 and 1000 words
from each training, validation, and testing domain
of meta-learner.

Evaluation of Meta-Learner
• F1-score of the proposed base meta-learner model is

0.81.

• We further fine-tune meta-learner for a new domain:

•

End Task Model
• We use a simple embedding layer + Bi-LSTM

model + dense + softmax to evaluate the
performance of different embeddings.

• The input size of Bi-LSTM is the same as the
embedding and the output size is 128.

• We apply dropout rate of 0.5 on all layers except
the last layer and use Adam as the optimizer.

Baselines of Pre-trained
Embedding

• No Embedding (NE): random initialization of embedding
layer.

• fastText (Wiki.en), GoogleNews, GloVe.Twitter.27B, GloVe.
6B, GloVe.840B

• New Domain 10M (ND 10M), New Domain 30M (ND 30M)

• 200 Domains + New Domain 30M (200D + ND 30M)

• L-DENP 200D: replace the meta-learner with a cosine
function.

Results

Conclusions
• We formulate a problem of learning domain word

embedding from small corpus.

• Given many previous domains and a small new
domain corpus, the proposed method can leverage
relevant contexts from in the past domain to
augment the current domain, via a meta-learner.

• Experimental results show that our method is
promising.

Application to Aspect
Extraction

• Double Embeddings and CNN-based Sequence
Labeling for Aspect Extraction (ACL 2018)

• Both general-purpose word embeddings and
domain-specific word embeddings have their own
merits for different types of words.

•

Extension
• Double Embeddings and CNN-based Sequence

Labeling for Aspect Extraction (ACL 2018)

•

Roadmap
• Motivation

• Lifelong Supervised Learning

• Open-world Classification (WWW 2019)

• Lifelong Self-supervised Learning

• Domain Word Embedding (IJCAI 2018, ACL 2018)

• Contextualized Domain Representation Learning

!79

Future Work

• Contextualized Domain Representation Learning

• Pre-trained language models, such as ELMo and BERT,
significantly boost the performance of many NLP tasks.

• However, they are not perfect on

• new domains.

• end tasks with less training data.

!80

Future Work

• Contextualized Domain Representation Learning

• keep learning better representations from general-
purpose language models to domain-specific language
models for better fine-tuning of end tasks.

• keep more relevant tasks before fine-tuning on end
tasks with less training data.

!81

Reference
Hu Xu, Bing Liu, Lei Shu, P. Yu, Open-world Learning and Application to Product
Classification, The Web Conference (WWW 2019)

Hu Xu, Bing Liu, Lei Shu, Philip S. Yu, BERT Post-Training for Review Reading
Comprehension and Aspect-based Sentiment Analysis, NAACL 2019

Lei Shu, Hu Xu, Bing Liu and Piero Molino, Modeling Multi-Action Policy for Task-
Oriented Dialogues, EMNLP 2019

Lei Shu, Piero Molino, Mahdi Namazifar, Bing Liu, Hu Xu, Huaixiu Zheng and
Gokhan Tur, Flexibly-Structured Model for Task-Oriented Dialogues, SIGDIAL 2019,

Hu Xu, Bing Liu, Lei Shu, Philip S. Yu, Double Embeddings and CNN-based
Sequence Labeling for Aspect Extraction, ACL 2018

Hu Xu, Bing Liu, Lei Shu, Philip S. Yu, Lifelong Domain Word Embedding via Meta-
Learning, IJCAI 2018

!82

Reference Cont.
Hu Xu, Sihong Xie, Lei Shu, Philip S. Yu, Dual Attention Network for Product Compatibility
and Function Satisfiability Analysis, AAAI 2018

Hu Xu, Sihong Xie, Lei Shu, Philip S. Yu, Product Function Need Recognition via Semi-
supervised Attention Network, IEEE Bigdata 2017

Lei Shu, Hu Xu, Bing Liu, DOC: Deep Open Classification of Text Documents, EMNLP
2017

Lei Shu, Hu Xu, Bing Liu, Lifelong Learning CRF for Supervised Aspect Extraction, ACL
2017

Hu Xu, Sihong Xie, Lei Shu, Philip S. Yu, CER: Complementary Entity Recognition via
Knowledge Expansion on Large Unlabeled Product Reviews, IEEE Bigdata 2016

Lei Shu, Bing Liu, Hu Xu, and Annice Kim, Lifelong-RL: Lifelong Relaxation Labeling for
Separating Entities and Aspects in Opinion Targets, EMLNP 2016

!83

QAs

• Thanks for coming.

!84

Additional Slides

!85

Roadmap
• Motivation

• Lifelong Supervised Learning

• Open-world Classification (WWW 2019)

• Graph Representation Learning

• Lifelong Self-supervised Learning

• Domain Word Embedding (IJCAI 2018, ACL 2018)

• Contextualized Domain Representation Learning

!86

Future Work

• Lifelong Graph Representation Learning

• learning the changes of a knowledge graph (KB) and
the updated representation for reasoning, policy
learning and future use.

!87

Retrieve Relevant Past Knowledge

Augmented Embedding Training

 89

Fine-tune Meta-Learner

• Sample 3000 words from each domain of end tasks
and select 3500 paired examples for training, 500
examples for validation and 2000 examples for
testing.

 90

Evaluation of End Task

• We randomly draw 1500 reviews from each class to
make up the experiment data, from which we keep
10000 reviews for testing and split the rest 7:1 for
training and validation, respectively.

• We train and evaluate each task on each system 10
times (with different initializations) and average the
results.

